This work is devoted to research of 30CrMnSiA steel structurally modified surface layers and study of electrolyte-plasma treatment parameters influence on changing peculiarities of structural-phase state and also the increase of constructional 30CrMnSi steel operating ability. The chosen technology leads to the formation of stable ferrite-pearlite structures in 30CrMnSi steel surface layers, provides high mechanical properties. As for the basic experimental methods of research in the work we used metallographic analysis applying optical microscope «NEOPHOT-21» and «AXIOPHOT-2», Х-ray analysis on the diffractometer ХPertPRO in monochromatic CuKα-radiation, mechanical tests for microhardness on PMT-3М installation. It is established that microstructure of 30CrMnSi steel modified layers samples while different processing modes, consists of α - phase, iron carbides. Using technology of structural steels electrolytic-plasma cementation under arc discharge terms in the electrolyte, we get diffusive surface layer with increased microhardness parameters and wear resistance providing good operating ability for details often subjected to wear.