In order to fully utilize the control degrees of freedom of a multi-three-phase-star smooth-pole permanent magnet synchronous motor (PMSM), this paper first develops a modeling approach using a new matrix transformation method. The proposed transformation produces decoupled and independent star windings, removing the inductive couplings and preserving the model and torque control’s consistency as the number of phases increases. The model, together with a new vector control scheme, is superior for studying the effect of the winding phase angle shift on motor performance. Based on a numerical simulation, this paper focuses on the quality analysis of phase currents, non-sequential currents, and torque ripple with different phase angles for double- and triple-star PMSM drives. The control of a triple-star PMSM is validated, and the behavior analysis is investigated by OPAL-RT.