By adjusting the content of geopolymer in geopolymer stabilized phosphogypsum (GSP) as roadbed filler, along with the mixing ratio, this paper mainly explores tendencies in the mechanical properties and water stability of GSP. This research is based on macro-mechanical properties such as unconfined compressive strength, resilience modulus, California bearing ratio and shear strength. It is also based on water stability tests, such as the water soaking test, dry and wet cycle test and expansion test, to explore changes in water stability. As for the durability of GSP, this paper is mainly based on the realization of a long time observation of mechanical properties and water stability. In the existing research, most of the stabilized phosphogypsum (PG) base material or roadbed filler consists of cement, lime, etc. In this paper, a new exploration is carried out on the composition of stabilized PG material, realized without the participation of cement. The 28 d compressive strength of GSP reaches 2.5 MPa, and over time this strength grows, which prevents the phenomenon of strength inversion that may occur in conventional cement-stabilized PG. In addition, a long-term soaking experiment was designed in this study based on the material after the strength was stabilized for up to 90 d. After the strength was steady, the GSP with the best water stability still had a softening coefficient of 80% after experiencing water immersion for 7 d. After determining the feasibility of the mechanical properties and water stability of GSP as roadbed filler, we further explored the strength formation mechanism of GSP by microscopic tests (XRD and SEM). This shows that geopolymer can stabilize PG in two main ways: one is the hydration reaction with PG to generate C-S-H gel and ettringite, and the other is to connect PG not involved in the chemical reaction to form a dense whole through generated hydration products. Geopolymer, stabilizing a high amount of PG, not only provides a new method for the consumption of PG, but also has more stable performance than cement, and has certain advantages in economy. In addition, the advantage of this study is that good performance can be achieved by simply sieving PG and adjusting the geopolymer ratio in practical engineering projects.