Two techniques for the shape reconstruction of multiple metallic cylinders from scattered fields are investigated in this paper, in which two-dimensional configurations are involved. After an integral formulation, the method of moment (MoM) is applied to solve it numerically. Two separate perfect-conducting cylinders of unknown shapes are buried in one half-space and illuminated by the transverse magnetic (TM) plane wave from the other half space. Based on the boundary condition and the measured scattered field, a set of nonlinear integral equation is derived and the imaging problem is reformulated into optimization problem. The non-uniform steady state genetic algorithm (NU-SSGA) and asynchronous particle swarm optimization (APSO) are employed to find out the global extreme solution of the object function. Numerical results demonstrate even when the initial guesses are far away from the exact shapes, and the multiple scattered fields between two conductors are serious, good reconstruction can be obtained. In addition, the effect of Gaussian noise on the reconstruction results is investigated and the numerical simulation shows that the reconstruction results are good and acceptable, as long as the SNR is greater than 20 dB.