BackgroundAs an available new tool for spinal surgery, robotic technology holds great potential and has been demonstrated to have better clinical outcomes compared with traditional techniques. However, it has not been compared with other assisted tools for the treatment of lumbar degenerative disease. This article focused on studying such variances.Material/MethodsA total of 176 pedicle screws were inserted in 39 patients using a spine robot (group 1), 134 screws were implanted in 28 patients using navigational template (group 2), 234 screws were implanted in 51 patients by O-arm-based navigation (group 3), and 346 screws were implanted in 72 patients by fluoroscopy-guided assistance (group 4). The screw position was evaluated using postoperative scans according to Rampersaud A to D classification, and other secondary data were also collected.Results“Perfect” pedicle screw insertion (Grade A) was 90.34%, 91.79%, 84.19%, and 65.03% of groups 1–4, respectively. “Clinically acceptable” screw implantation (Grade A+B) was 94.32%, 95.52, 90.60%, and 78.03% in groups 1–4, respectively. Deviation sagittal (°) respectively was 3±9, 2±10, 4±7, and 10±8° in groups 1–4, respectively. Deviation transversal (°) screw insertion was 3±8, 3±7, 4±9, and 8±13° in groups 1–4, respectively. Statistical analysis showed group 1 had no significant difference in the accuracy of “Perfect and Clinical acceptable” as well as deviation sagittal or transversal, respectively, compared with groups 2 and 3 but not group 4.ConclusionsRobotic-assistance technology no clear advantage in terms of accuracy compared to the navigation template or O-arm systems for screw implantation, but it significantly reduced adverse events, fluoroscopy time per screw, postoperative stay, and blood loss.