Quantum mechanical states are normally described by the Schrödinger equation, which generates real eigenvalues and quantizable solutions which form a basis for the estimation of quantum mechanical observables, such as momentum and kinetic energy. Studying transition in the realm of quantum physics and continuum physics is however more difficult and requires different models. We present here a new equation which bears similarities to the Korteweg–DeVries (KdV) equation and we generate a description of transitions in physics. We describe here the two- and three-dimensional form of the KdV like model dependent on the Plank constant [Formula: see text] and generate soliton solutions. The results suggest that transitions are represented by soliton solutions which arrange in a spiral-fashion. By helicity, we propose a conserved pattern of transition at all levels of physics, from quantum physics to macroscopic continuum physics.