In this work we propose a method for maximization of the efficiency of an underwater wireless power transfer system that has to cope with load changes, quality factor and coupling coefficient deviations. By means of 3D electromagnetic simulation and numerical computation, parameter analysis is accomplished using different compensation methods, namely series-series, series-parallel and parallel-parallel. Moreover, a linear load profile is assessed as a proof of concept applicable to more complex load behaviours. For this linear load variation a maximum measured average efficiency of 82% was obtained throughout the entire battery state of charge. Electronics and full system considerations are also presented. Finally, a good agreement between theoretical predictions of the proposed method, simulation assessment and measurement results was verified.