The realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering 1, 2 that is both of fundamental and technological significance. In conventional optical materials, the nonlinearity at light powers corresponding to single photons is negligibly weak. Here we demonstrate a medium that is nonlinear at the level of individual quanta, exhibiting strong absorption of photon pairs while remaining transparent to single photons. The quantum nonlinearity is obtained by coherently coupling slowly propagating photons [3][4][5] to strongly interacting atomic Rydberg states [6][7][8][9][10][11][12] in a cold, dense atomic gas 13 . Our approach opens the door for quantum-byquantum control of light fields, including single-photon switching 14 , all-optical deterministic 1 quantum logic 15 , and the realization of strongly correlated many-body states of light 16 .Recently, remarkable advances have been made towards optical systems that are nonlinear at the level of individual photons. The most promising approaches have used high-finesse optical cavities to enhance the atom-photon interaction probability 2,[17][18][19][20][21] . In contrast, our present method is cavity-free and is based on mapping photons onto atomic states with strong interactions in an extended atomic ensemble 13,14,22,23 . The central idea is illustrated in Fig. 1, where a quantum probe field incident onto a cold atomic gas is coupled to high-lying atomic states (Rydberg levels 24 ) by means of a second, stronger laser field (control field). For a single incident probe photon, the control field induces a transparency window in the otherwise opaque medium via Electromagnetically Induced Transparency (EIT), and the probe photon travels at much reduced speed in the form of a coupled excitation of light and matter (Rydberg polariton). However, in stark contrast to conventional EIT 5 , if two probe photons are incident onto the Rydberg EIT medium, the strong interaction between two Rydberg atoms tunes the EIT transition out of resonance, thereby destroying the EIT and leading to absorption 14,22,23, 25, 26 . The experimental demonstration of an extraordinary optical material exhibiting strong two-photon attenuation in combination with single-photon transmission is the central result of this work.The quantum nonlinearity can be viewed as a photon-photon blockade mechanism that prevents the transmission of any multi-photon state. It arises from the Rydberg excitation blockade 27 , which precludes the simultaneous excitation of two Rydberg atoms that are separated by less than a blockade radius r b (see Figure 1). During the optical excitation, an incident single photon is 2 converted, under the EIT conditions, into a Rydberg polariton inside the medium. However, due to the Rydberg blockade, a second polariton cannot travel within a blockade radius from the first one, and EIT is destroyed. Accordingly if the second photon approaches the single Rydberg polariton, it will be signific...