Electron attachment to CO2 embedded in superfluid He
droplets leads to ionic complexes of the form (CO2)n– and (CO2)nO– and, at much lower intensities,
He containing ions of the form Hem(CO2)nO–. At low
energies (<5 eV), predominantly the non-decomposed complexes (CO2)n– are formed
via two resonance contributions, similar to electron attachment to
pristine CO2 clusters. The significantly different shapes
and relative resonance positions, however, indicate particular quenching
and mediation processes in CO2@He. A series of further
resonances in the energy range up to 67 eV can be assigned to electronic
excitation of He and capture of the inelastically scattered electron
generating (CO2)n– and two additional processes where an intermediately formed He*
leads to the nonstoichiometric anions (CO2)nO–.