2017
DOI: 10.1103/physreva.95.053422
|View full text |Cite
|
Sign up to set email alerts
|

Electron correlation in beryllium: Effects in the ground state, short-pulse photoionization, and time-delay studies

Abstract: We apply a three-dimensional (3D) implementation of the time-dependent restricted-active-space self-consistent-field (TD-RASSCF) method to investigate effects of electron correlation in the ground state of Be as well as in its photoionization dynamics by short XUV pulses, including time-delay in photoionization. First, we obtain the ground state by propagation in imaginary time. We show that the flexibility of the TD-RASSCF on the choice of the active orbital space makes it possible to consider only relevant a… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
42
0

Year Published

2018
2018
2020
2020

Publication Types

Select...
5
2

Relationship

3
4

Authors

Journals

citations
Cited by 17 publications
(44 citation statements)
references
References 73 publications
(151 reference statements)
2
42
0
Order By: Relevance
“…(i) From the computed wavefunction, one extracts the expectation value of the radial distance in a given direction, r(t) , as a function of time and the linear momentum of the photoelectron, k that can be evaluated in different ways. For instance k , can be evaluated via integrating only in the outer part of the simulation volume (Omiste et al, 2017;Omiste and Madsen, 2018). (ii) Using r(t) and k the effective ionization time,…”
Section: A Extraction Of Observablesmentioning
confidence: 99%
See 1 more Smart Citation
“…(i) From the computed wavefunction, one extracts the expectation value of the radial distance in a given direction, r(t) , as a function of time and the linear momentum of the photoelectron, k that can be evaluated in different ways. For instance k , can be evaluated via integrating only in the outer part of the simulation volume (Omiste et al, 2017;Omiste and Madsen, 2018). (ii) Using r(t) and k the effective ionization time,…”
Section: A Extraction Of Observablesmentioning
confidence: 99%
“…For example in beryllium, photoionization of the ground state into the channel Be + [(1s 2 2p) 2 P o ]+e − (s or d) changes two orbitals in the dominant configurations by the action of the one-body photoionization operator. Therefore, that process can not be described by TDHF (Omiste et al, 2017).…”
Section: Time Delay In Photoionizationmentioning
confidence: 99%
“…For instance, the ground-state energy for MCTDHF with 5 orbitals is −14.6171, larger than the value −14.6192 in Ref. [40] which was taken as the most bound ground-state solution without taking into account any symmetry considerations. In the present work, we consider ground-state wave functions belonging to the same family of solutions, i. e., functions with even parity, M L = 0 for each configuration and orbitals with well defined magnetic quantum number.…”
Section: A Energymentioning
confidence: 64%
“…In these methods the number of orbitals can be reduced by introducing time-dependent orbitals, which therefore implies a smaller number of configurations. The most commonly used SCF methods which include correlation are multiconfigurational time-dependent Hartree-Fock (MCTDHF) 14,[20][21][22][23][24][25][26][27][28][29][30][31] , time-dependent completeactive-space SCF (TD-CASSCF) [32][33][34][35][36] and time-dependent restricted-active-space SCF (TD-RASSCF) 33,[37][38][39][40][41][42] approaches. Specifically, TD-RASSCF not only reduces the number of orbitals, but also the number of configurations can be reduced by appropriately choosing the restricted-active-space (RAS).…”
Section: Introductionmentioning
confidence: 99%
“…Over the past years, various timedependent many-electron methods have been developed to address dynamic electron correlation in strong-field ionization of atoms and molecules. Among those, the timedependent R-matrix approach [35][36][37][38], the time-dependent Feshbach close-coupling (TDFCC) method [39], the multiconfigurational time-dependent Hartree-Fock (MCTDHF) method [40][41][42][43][44][45], and the time-dependent restricted-activespace self-consistent-field (TD-RAS-SCF) theory [46][47][48][49][50][51][52][53] have been used to understand dynamics. The time-dependent restricted-active-space configuration-interaction (TD-RASCI) method [54], and the time-dependent generalized-activespace configuration-interaction (TD-GASCI) method [33,34,55] take electron correlation into account through a configuration-interaction (CI) expansion by selectively choosing important Slater determinants relevant to the physical process of interest.…”
Section: Introductionmentioning
confidence: 99%