Structural studies are largely performed without taking into account vibrational effects or with incorrectly taking them into account. The paper presents a first-order perturbation theory analysis of the problem. It is shown that vibrational effects introduce errors on the order of 0.02Å or larger (sometimes, up to 0.1-0.2Å) into the results of diffraction measurements. Methods for calculating the mean rotational constants, mean-square vibrational amplitudes, vibrational corrections to internuclear distances, and asymmetry parameters are described. Problems related to low-frequency motions, including torsional motions that transform into free rotation at low excitation levels, are discussed. The algorithms described are implemented in the program available from the author (free).