Electron acceleration by dispersive scale Alfvén waves at Jupiter is investigated using a Gyrofluid‐Kinetic‐Electron model. Specifically, the simulations consider the propagation of an Alfvén wave perturbation from the center of the Io plasma torus to high‐latitude regions that are consistent with recent Juno satellite observations (e.g., Allegrini et al., 2017, https://doi.org/10.1002/2017GL073180; Mauk, et al., 2017a, https://doi.org/10.1038/nature23648; Mauk, et al., 2017b, https://doi.org/10.1002/2016GL072286; Szalay et al., 2018, https://doi.org/10.1029/2018JE005752). As in those observations, the energized electron spectra is broadband in nature and the majority of the energization is under the interaction of inertial Alfvén waves at high latitudes. The extent of the energization associated with these waves is proportional to both the magnitude of the wave perturbation and the ratio of the torus to high‐latitude density.