In order to more deeply understand the mechanisms of catalytic reactions, improved methods are needed to monitor changes that occur in the electronic, structural, and chemical properties of catalytic systems under the conditions in which they work. We describe here a microreactor‐based approach that integrates the capabilities of advanced X‐ray, electron, optical, and gas‐phase compositional analysis techniques under operando conditions. For several exemplary catalytic systems, we demonstrate how this approach enables the characterization of three of the major factors that contribute to structure–property correlations in heterogeneous catalysis. Specifically, we describe how this approach can be used to better understand the atomic structure and elemental composition of nanocatalysts, the physiochemical properties of the support and catalyst/support interfaces, and the gas‐ and surface‐phase chemistry that occurs under operando conditions. We highlight the generality of the approach, as well as opportunities for future developments.