2018
DOI: 10.15407/ujpe63.01.0011
|View full text |Cite
|
Sign up to set email alerts
|

Electron-Impact Excitation of 51S – 51Po Resonance Transition in Sr Atom

Abstract: Викладено основнi аспекти нової версiї методу -матрицi з -сплайнами (BSR), що ґрунтується на використаннi неортогональних орбiталей. Наближення BSR викори-стане для розрахункiв резонансної структури iнтегральних перерiзiв переходу 5при розсiяннi електронiв на атомi стронцiю в областi енергiй до 10 еВ. Для точного представлення хвильових функцiй мiшенi використовувався багатоконфiгура-цiйний метод Хартрi-Фока з неортогональними орбiталями. Розклад у випадку силь-ного зв'язку включав 31 зв'язаний стан атома стро… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
6
0
2

Year Published

2022
2022
2022
2022

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(8 citation statements)
references
References 18 publications
0
6
0
2
Order By: Relevance
“…The essence of the method aimed at the discretization of the continuum of the (𝑁 + 1)-electron system "atom + incident electron", which was proposed in our works [6][7][8][9][10][11][12][13][21][22][23][24][25][26], consists in the expansion of the target bound orbitals 𝑃 𝑛𝑗 𝑙𝑗 (𝑟) and the scattered electron orbitals 𝐹 Γ 𝑖𝛼 (𝑟) (r) in a complete finite set {𝐵 𝑖 } 𝑛 𝑖=1 of the basis splines 𝐵 𝑖 and the following single diagonalization of the matrix of the self-conjugated system Hamiltonian 𝐻 𝑁 +1 + 𝐿 𝑁 +1 in the discrete basis (13). The main advantage of this method of continuum discretization is based on the fact that the matrix of the total Hamiltonian 𝐻 𝑁 +1 + 𝐿 𝑁 +1 has a very sparse -namely, band -structure in the 𝐵-spline basis, which considerably simplifies the solution of the corresponding system of algebraic equations.…”
Section: 𝑅-Matrix Methods and Its Modificationsmentioning
confidence: 99%
See 2 more Smart Citations
“…The essence of the method aimed at the discretization of the continuum of the (𝑁 + 1)-electron system "atom + incident electron", which was proposed in our works [6][7][8][9][10][11][12][13][21][22][23][24][25][26], consists in the expansion of the target bound orbitals 𝑃 𝑛𝑗 𝑙𝑗 (𝑟) and the scattered electron orbitals 𝐹 Γ 𝑖𝛼 (𝑟) (r) in a complete finite set {𝐵 𝑖 } 𝑛 𝑖=1 of the basis splines 𝐵 𝑖 and the following single diagonalization of the matrix of the self-conjugated system Hamiltonian 𝐻 𝑁 +1 + 𝐿 𝑁 +1 in the discrete basis (13). The main advantage of this method of continuum discretization is based on the fact that the matrix of the total Hamiltonian 𝐻 𝑁 +1 + 𝐿 𝑁 +1 has a very sparse -namely, band -structure in the 𝐵-spline basis, which considerably simplifies the solution of the corresponding system of algebraic equations.…”
Section: 𝑅-Matrix Methods and Its Modificationsmentioning
confidence: 99%
“…Unlike the standard 𝑅-matrix method [16,17], in the framework of its proposed BSR version [6][7][8][9][10][11][12][13][21][22][23][24][25][26], the radial target orbitals 𝑃 𝑛𝑗 𝑙𝑗 are optimized for every term independently. The application of termdependent nonorthogonal orbitals provides a more accurate description of the target states and makes it possible to most comprehensively take into account such important physical effects as the valent and covalent correlations in atoms with unfilled shells and the relaxation of the quantum-mechanical orbit of excited electron.…”
Section: 𝑅-Matrix Methods and Its Modificationsmentioning
confidence: 99%
See 1 more Smart Citation
“…Òóò iíòå ðóâàííÿ çà ðàäiàëüíèìè çìiííèìè îáìåaeó¹òüñÿ âíóòðiøíüîþ R-ìàòðè÷íîþ äiëÿíêîþ. Îñêiëüêè íà áàçèñíi ôóíêöi¨u j íàêëàäåíi ãðàíè÷íi óìîâè (14), Ïðî¹êöiþþ÷è ðiâíÿííÿ (17) íà ôóíêöi¨êàíàëiâ ΦΓ i i âèêîíóþ÷è îá÷èñëåííÿ â òî÷öi r = a, ïðèõîäèìî äî ôîðìóëè (11), ó ÿêié åëåìåíòè R-ìàòðèöi…”
unclassified
“…äå b äîâiëüíà äiéñíà ñòàëà. Äëÿ áàçèñíèõ ôóíêöié u j , ùî çàäîâîëüíÿþòü ãðàíè÷íi óìîâè(14), ãàìiëüòîíiàí H N +1 ó âíóòðiøíié äiëÿíöi íå ¹ åðìiòîâèì óíàñëiäîê òîãî, ùî ïîâåðõíåâi ÷ëåíè íå îáåðòàþòüñÿ â íóëü çà r = a. Îäíàê öi ÷ëåíè ìîaeíà âèëó÷èòè çà äîïîìîãîþ îïåðàòîðà Áëîõà[26] …”
unclassified