The protein, azurin,
has enabled the study of the tryptophan radical.
Upon UV excitation of tyrosine-deficient apoazurin and in the presence
of a Co(III) electron acceptor, the neutral radical (W48•)
is formed. The lifetime of W48• in apoazurin is 41 s, which
is shorter than the lifetime of several hours in Zn-substituted azurin.
Molecular dynamics simulations revealed enhanced fluctuations of apoazurin
which likely destabilize W48•. The photophysics of W48 was
investigated to probe the precursor state for ET. The phosphorescence
intensity was eliminated in the presence of an electron acceptor while
the fluorescence was unchanged; this quenching of the phosphorescence
is attributed to ET. The kinetics associated with W48• were
examined with a model that incorporates intersystem crossing, ET,
deprotonation, and decay of the cation radical. The estimated rate
constants for ET (6 × 10
6
s
–1
) and
deprotonation (3 × 10
5
s
–1
) are
in agreement with a photoinduced mechanism where W48• is derived
from the triplet state. The triplet as the precursor state for ET
was supported by photolysis of apoazurin with 280 nm in the absence
and presence of triplet-absorbing 405 nm light. Absorption bands from
the neutral radical were observed only in the presence of blue light.