Using an anti-NHE1 antibody, we demonstrate the presence of a Na+/H+ exchanger of isoform 1 (NHE1) in the human eccrine sweat duct. A strong staining was observed at the basolateral membrane of the outer cell layer (NHE1basal), at the junction between inner and outer cells layers (NHE1inter), and along the lateral membranes (NHE1later) of all cells of the duct. At the luminal membrane, no staining was demonstrated either for NHE1 or NHE3. To investigate Na+/H+ mediated proton transport, straight sweat duct portions were isolated and perfused in vitro under HCO3-free conditions. In the presence of basolateral 5-ethyl-N-isopropyl amiloride (EIPA), an acidification of 0.29 +/- 0.03 pH units was observed, whereas no effect was observed with luminal EIPA. Bath sodium removal generated a stronger acidification (0.41 +/- 0.09 pH units). Removal of luminal sodium (in the absence or presence of basolateral EIPA), or low luminal chloride, led to an alkalinization, presumably due to a decrease in intracellular sodium, strongly suggesting functional activity of NHE1inter. We therefore conclude that in the sweat duct, NHE1 plays a major role in intracellular pH regulation.