The telomerase ribonucleoprotein complex ensures complete replication of eukaryotic chromosomes. Telomerase RNA, TER, provides the template for replicating the G-rich strand of telomeric DNA, provides an anchor site for telomerase-associated proteins, and participates in catalysis through several incompletely characterized mechanisms. A major impediment towards understanding its non-templating roles is the absence of high content structural information for TER within the telomerase complex. Here, we used selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) to examine the structure of Tetrahymena TER free in solution and bound to tTERT in the minimal telomerase RNP. We discovered a striking difference in the two conformations and established direct evidence for base pair triples in the tTER pseudoknot. We then used SHAPE data, previously published FRET data, and biochemical inference to model the structure of tTER using discrete molecular dynamics simulations. The resulting tTER structure was docked with a homology model of tTERT to characterize the conformational changes of tTER that attend binding to tTERT. Free in solution, tTER appears to contain four pairing regions: stems I, II, and IV, which are present in the commonly accepted structure, and stem III, a large paired region that encompasses the template and pseudoknot domains. Our interpretation of the data and subsequent modeling affords a molecular model for telomerase assemblage in which a large stem III of tTER unwinds to allow proper association of the template with the tTERT active site and formation of the pseudoknot. Additionally, analysis of our SHAPE data and previous enzymatic footpinting allows us to propose a model for stem-loop IV function in which tTERT is activated by binding stem IV in the major grove of the helix-capping loop.