We present a comprehensive investigation into magnetoelastic sensors (MES) technology applied to biomedical engineering. This includes the working principles, detection methods, and application fields of MES technology. MES are made of amorphous metallic glass ribbons and are wireless and passive, meaning that it is convenient to monitor or measure the parameters related to biomedical engineering. MES are based on the inverse magnetoelastic (Villari) effect. When MES are subjected to mechanical stress, their magnetic susceptibility will change accordingly. And the susceptibility of MES is directly related to their magnetic permeability. The varying permeability can positively reflect the applied stress. The various detection methods that have been developed for different field applications include measurement of force, stress, and strain, monitoring of various chemical indexes, and consideration of different biomedical parameters such as the degradation rate and force conditions of artificial bone, as well as various physiological indexes including ammonia level, glucose concentration, bacteria growth, and blood coagulation.