. Can. J. Chem. 54, 744 (1976). The effect of molecular structure on electron behavior in liquids was studied by measuring secondary electron penetration ranges bGP and thermal electron mobilities II, in substituted methanes and ethylenes. The penetration ranges are smaller (energy transfer cross sections are larger) when the alkane molecules are less rigid. It was confirmed that the epithermal electron energy transfer interaction radius in a liquid phase alkane molecule is limited to two C-C bonds in series. This modifies the earlier noted correlation between b, , and the degree of sphericity of the molecules. For example, the density normalized range b,,d in the relatively sphere-like tetraethylmethane (54 X lo-* g/cm2) is more similar to that in the distinctly nonspherical diethylmethane (11-pentane, 43 X g/cm2) than to that in the sphere-like tetramethylmethane (126 X g/cm2). Tetraethylmethane is too large for the entire molecule to interact with an electron in the liquid phase, and the possibility of rotations about the C-C bonds in the ethyl groups makes the molecule less rigid. Electrons sense these relatively sphere-like molecules to be similar to those of a 11-alkane. Connecting tert-butyl groups to olefinic or acetylenic carbons creates sphere-like quasi neopentyl groups which greatly enhance electron ranges in the unsaturated compounds. In conjugated olefins cis-trans effects are largely overshadowed by the general efficiency of these compounds as electron energy sinks. The earlier noted correlation between be, and u, contains fine structure. For a given value of bGP, 11, increases in the order 11-alkane < cyclo or branched alkane < olefin. Electron mobilities are interpreted in terms of a model that contains a Gaussian distribution of solvated electron state energies, a conduction band, and thermally activated transitions between them. The model is a combination of our treatment of electrons in ethers and Schiller's treatment of electrons in hydrocarbons. The percolation model does not provide a sufficiently complete interpretation of electron migration in hydrocarbons.J.-P. DODELET, K. SHINSAKA et G. R . FREEMAN. Can. J. Chem. 54,744 (1976). L'effet de la structure molCculaire sur le comportement des Clectrons en exces dans les liquides a Ct C Ctudie en mesurant, pour differentes substitutions du mithane et de l'Cthylkne, le parcours des Clectrons secondaires, bo, et les mobilitks des Clectrons thermalises, 11,. Lorsque les molkules d'alcanes perdent leur rigiditC, les parcours Clectroniques sont plus courts. La probabilitC de transfert d'knergie par 1'Clectron Cpithermique est donc plus importante. Le rayon d'interaction de ce dernier avec les molkules d'alcanes a CtC confirm6 h deux liens C-C en strie. Ceci modifie la correlation prCcCdente entre bGp et le degrC de sphericit6 des molCcules. Par exemple, le parcours, normalis6 pour la densite, (bGpri = 54 X g/cm2) dans le tetraCthylmCthane resemble plus au parcours Clectronique dans le 11-pentane (43 X g/cm2) qu'i celui dans le tetramtthylmCthane (...