Characterization Techniques for Polymer Nanocomposites 2012
DOI: 10.1002/9783527654505.ch9
|View full text |Cite
|
Sign up to set email alerts
|

Electron Paramagnetic Resonance and Solid‐State NMR Studies of the Surfactant Interphase in Polymer–Clay Nanocomposites

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2014
2014
2014
2014

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 21 publications
0
1
0
Order By: Relevance
“…The temperature evolution of CW EPR spectra of surfactant spin labels were shown to be sensitive to several temperature activated processes occurring in the surfactant layer or polymeric region such as order-disorder transition of the surfactant layer, melting of the crystalline polymer domains or glass transition of the polymer [ 11 ]. Since our polymers do not have crystalline domains at any temperature and their glass transition temperature, as it was measured by DSC (Differential Scanning Calorimetry), is close to the temperature range where EPR looses sensitivity, we can rule out that these are the processes causing the observed dynamic change.…”
Section: Resultsmentioning
confidence: 99%
“…The temperature evolution of CW EPR spectra of surfactant spin labels were shown to be sensitive to several temperature activated processes occurring in the surfactant layer or polymeric region such as order-disorder transition of the surfactant layer, melting of the crystalline polymer domains or glass transition of the polymer [ 11 ]. Since our polymers do not have crystalline domains at any temperature and their glass transition temperature, as it was measured by DSC (Differential Scanning Calorimetry), is close to the temperature range where EPR looses sensitivity, we can rule out that these are the processes causing the observed dynamic change.…”
Section: Resultsmentioning
confidence: 99%