Abstract. Designing nanostructured materials with high dosimetric efficiency is a great challenge in radiation dosimetry research. From rare-earth series, yttrium oxide is considered as excellent host matrix for rare-earth ions, leading to formation of advanced functional materials with optical, mechanical, chemical, and thermal properties notably improved. Nevertheless, there is a lack of information which correlates microstructural characteristics and performance of rare earths. This work aims to evaluate the radiation effects on microstructure and EPR signal of Y 2 O 3 rods produced by colloidal processing followed by sintering at 1600ºC/4h in air. Ceramic rods were exposed to gamma radiation with doses up to 100kGy. Microstructural and dosimetric characterizations were performed by XRD, SEM and EPR techniques. Yttrium oxide rods as sintered exhibited dense microstructure (96.6% theoretical density) and linear EPR dose response behaviour for wide dose range. These results reveal that yttrium oxide is a promising material for radiation dosimetry.