“…In recent years, the field has seen an evolution from the early measurements of transient absorption and reflectivity (Chemla and Shah, 2000;Elsayed-Ali et al, 1987;Koshihara et al, 1990;Miyano et al, 1997;Schoenlein et al, 1987;Tsen, 2001) into a multifaceted set of techniques, where the particular details of experiments depend on the targeted subsystem and dynamics (Averitt and Taylor, 2002;Orenstein, 2012). Some of the most advantageous capabilities of these approaches are: (i) direct detection of transient changes in the electronic joint density of states via frequency-resolved measurements of the transient complex optical conductivity from the THz to the extreme ultraviolet range (Baldini et al, 2020;Jager et al, 2017;Sie et al, 2015;Siegrist et al, 2019), (ii) simultaneous measurements of the dynamics of different subsystems by combining multiple detection schemes , including transient non-linear optical processes (Mahmood et al, 2021;Sala et al, 2016;Woerner et al, 2013) and polarization rotations sensitive to changes in magnetic orders (Beaurepaire et al, 1996;Kimel et al, 2020;Kirilyuk et al, 2010;Němec et al, 2018;Schlauderer et al, 2019;Walowski and Münzenberg, 2016), (iii) the integrability with other external stimuli, for example magnetic fields and hydrostatic pressure (Cantaluppi et al, 2018;Mitrano et al, 2014;Nicoletti et al, 2018;Trigo et al, 2012), and (iv) the ability to modulate and control the optical pulse to gain real-space information (Gedik et al, 2003;Mahmood et al, 2018;Torchinsky et al, 2014). These techniques have enabled the observation of a wide range of phenomena in the time domain including quasiparticle relaxation dynamics, electron-boson coupling strengths, gap magnitudes, photoexcited order parameters and collective mode oscillations …”