The present work aims to exploit the possibility of using the tautomerism in 2-hydroxy Schiff bases for molecular switching. The enol imine (E)⇔ enaminone (K) tautomerization in a series of 2-hydroxy Schiff bases have been investigated theoretically at the DFT/B3LYP/6-311G** level of theory. The intramolecular proton transfer processes have been explored, transition structures have been located and characterized. The kinetics and thermodynamics of the proton transfer process, and its time scale have been computed and discussed in the framework of the suitability as molecular switches. Substituent effects have been computed and its effect on the enthalpy changes (∆H*) and activation energies (∆G*) have been analyzed and discussed. Nonspecific solvent effects have also been taken into account by using the polarized continuum model (IPCM) of two different solvent. The tautomerization energies are decreased and hence the endothermic nature of the enol imine ⇔ enaminone tautomerization. The potential energy barriers, on the other hand, are increased due to the relative destabilization of the transition states. The NBO charge populations show that there is a high positive charge on the hydrogen atom during the process in all cases, which confirms that the proton transfer proceeds through a three-center interaction. The proton transfer processes, in all cases studied are kinetically allowed. The low potential energy barrier suggests that interconversion between the two tautomeric forms is spontaneous and the two forms may coexist.