Some alkyl and aryl isonitriles, considered as CO analogue sigma-donor and pi-acceptor ligands in transition metal chemistry, were studied by means of HeI photoelectron spectroscopy and electron transmission spectroscopy, in order to evaluate their donor-acceptor properties from the measured ionization energies (IE) and vertical electron attachment energies (VAE). The investigated molecules were 2-propyl, 1-butyl, tert-butyl, 1-pentyl, cyclohexyl, 2,6-dimethylphenyl, 4-methoxyphenyl and 4-chorophenyl isonitrile. By interpreting the spectra on the basis of literature data and quantum chemical calculations, the spectral features associated with the molecular orbitals mainly involved in coordination and back-donation were identified. The results show that the IE (10.62-10.95 eV) of the sigma electron pair (n(c)) responsible for the sigma-donor capability is substantially lower than that of CO. The VAEs of the empty pi* orbitals involved in the d/pi* back-donation indicate that aryl isonitriles are better acceptors (VAE <0.3 eV) than their aliphatic counterparts (VAE >2.7 eV). In the case of aryl derivatives, the pi-donor ability could also play some role in metal-ligand bonding (IE 8.74-9.34 eV). Isonitrile coordination characteristics are also compared with those of CO, N(2) and CH(3)CN.