Microturbulence, i.e. enhanced fluctuations of plasma density, electric and
magnetic fields, is of great interest in astrophysical plasmas, but occurs on
spatial scales far too small to resolve by remote sensing, e.g., at ~ 1-100 cm
in the solar corona. This paper reports spatially resolved observations that
offer strong support for the presence in solar flares of a suspected radio
emission mechanism, resonant transition radiation, which is tightly coupled to
the level of microturbulence and provides direct diagnostics of the existence
and level of fluctuations on decimeter spatial scales. Although the level of
the microturbulence derived from the radio data is not particularly high,
<\Delta n^2 >/n^2 ~ 10^{-5}$, it is large enough to affect the charged particle
diffusion and give rise to effective stochastic acceleration. This finding has
exceptionally broad astrophysical implications since modern sophisticated
numerical models predict generation of much stronger turbulence in relativistic
objects, e.g., in gamma-ray burst sources.Comment: 13 pages, 4 figures, ApJL accepte