Density functional theory (DFT) combined with non-equilibrium Green's functions (NEGF) is a powerful approach to model quantum transport under external bias potentials at reasonable computational cost. In this work, we present a new interface between the popular mixed Gaussian/plane waves electronic structure package, CP2K, and the NEGF, code SMEAGOL, the most feature-rich implementation of DFT-NEGF available for CP2K to date. The CP2K +SMEAGOL interface includes the implementation of current induced forces. We verify this implementation for a variety of systems: an infinite 1D Au wire, a parallel-plate capacitor, and a Au−H 2 −Au junction. We find good agreement with SMEAGOL calculations performed with SIESTA for the same systems and with the example of a solvated Au wire demonstrating for the first time that DFT-NEGF can be used to perform molecular dynamics simulations under bias of large-scale condensed phase systems under realistic operating conditions.