Perovskite rhodates are characterized by intermediate strengths of both electronic correlation as well as spin-orbit coupling (SOC) and usually behave as moderately correlated metals. A recent publication (Phys. Rev. B 95, 245121(2017)) on epitaxial SrRhO3 thin films unexpectedly reported a bad-metallic behavior and suggested the occurrence of antiferromagnetism below 100 K. We studied this SrRhO3 thin film by hard x-ray photoemission spectroscopy and found a very small density of states (DOS) at Fermi level, which is consistent with the reported bad-metallic behavior. However, this negligible DOS persists up to room temperature, which contradicts with the explanation of antiferromagnetic transition at around 100 K. We also employed electronic structure calculations within the framework of density functional theory and dynamical mean-field theory. In contrast to the experimental results, our calculations indicate metallic behavior of both bulk SrRhO3 and the SrRhO3 thin film. The thin film exhibits stronger correlation effects than the bulk, but the correlation effects are not sufficient to drive a transition to an insulating state. The calculated uniform magnetic susceptibility is substantially larger in the thin film than that in the bulk. The role of SOC was also investigated and only a moderate modulation of the electronic structure was observed. Hence SOC is not expected to play an important role for electronic correlation in SrRhO3. arXiv:1907.09677v1 [cond-mat.str-el]