The paper examines the linear and non-linear optical characteristics of an electron in harmonic Gaussian asymmetrical double quantum wells, taking into account thermodynamic variables such as temperature and hydrostatic pressure. Numerical calculations by considering the effective mass and parabolic band approximation are performed. The electron contained within an asymmetric double well generated by the sum of a parabolic and Gaussian potential has its eigenvalues and eigenfunctions determined using the diagonalization approach. For nonlinear optical coefficients, the density matrix expansion is used. Wavefunctions and energy levels vary as an effect of the applied fields. In harmonic Gaussian asymmetrical double quantum wells, the total optical absorption coefficient (TOAC), the relative refractive index changes (RRIC), and second harmonic generation (SHG) have all been theoretically investigated. The magnitude and position of the resonant peaks are significantly influenced by the temperature effects. With controllable coupling and externally applied hydrostatic pressure and temperature, the potential model presented in this study can be used to simulate and manipulate the optical and electronic properties of the asymmetric double-quantum heterostructures, such as double quantum dots and wells.