A time-domain numerical model is presented for simulating the finite-amplitude focused acoustic pulse propagation in a dissipative and nonlinear medium with a symmetrical source geometry. In this method, the main effects responsible in finite-amplitude wave propagation, i.e., diffraction, nonlinearity, and absorption, are taken into account. These effects are treated independently using the method of fractional steps with a second-order operator-splitting algorithm. In this method, the acoustic beam propagates, plane-by-plane, from the surface of a highly focused radiator up to its focus. The results of calculations in an ideal (linear and nondissipative) medium show the validity of the model for simulating the effect of diffraction in highly focused pulse propagation. For real media, very good agreement was obtained in the shape of the theoretical and experimental pressure-time waveforms. A discrepancy in the amplitudes was observed with a maximum of around 20%, which can be explained by existing sources of error in our measurements and on the assumptions inherent in our theoretical model. The model has certain advantages over other time-domain methods previously reported in that it: (1) allows for arbitrary absorption and dispersion, and (2) makes use of full diffraction formulation. The latter point is particularly important for studying intense sources with high focusing gains.