This paper presents the design and performance evaluation of an experimental platform that emulates the static and dynamic behavior of a 3 kW Wind Energy Conversion System (WECS). The platform includes a wind turbine emulator (WTE) using a separately excited DC motor (SEDCM) as the prime mover, coupled with a grid-connected doubly-fed induction generator (DFIG). This setup enables comprehensive laboratory studies of a WECS without the need for large-scale field installations. A novel inertia compensation strategy is implemented to ensure the SEDCM accurately replicates the power and torque characteristics of a real wind turbine across various wind profiles. The DFIG was chosen for its high efficiency at variable wind speeds and its reduced power converter requirements compared to other generators. The control strategy for the DFIG is detailed, highlighting its performance and seamless integration within the system. Unlike most studies focusing on generators connected to simple loads, this research considers a grid-connected system, which introduces additional challenges and requirements. This study thoroughly investigates the grid-connected converter, addressing specific demands for grid connection and ensuring compliance with grid standards. Experimental results validate the effectiveness of the emulator, demonstrating its potential as a key tool for optimizing wind turbine control strategies and real-time algorithm validation, and enhancing the performance and reliability of renewable energy systems.