Photocatalysts with a superior activity range, from ultraviolet (UV) to near-infrared (NIR) light, are attractive for solar utilization. From this perspective, sulfides are promising due to their narrower bandgap than oxides. In this report, NaBiS 2 was synthesized hydrothermally under mild conditions by adjusting the alkaline amount. The rough NaBiS 2 nanosheets possessed various surface atomic configurations on their surfaces, including amorphous clusters and amorphous nano-domains, revealed by HRTEM. A theoretical investigation of the band structure employing the density functional theory (DFT) method for the first time indicated that NaBiS 2 is an indirect bandgap semiconductor with a narrow bandgap of 1.02 eV. Experimentally, it showed excellent photocatalytic activity for the degradation of methyl blue under UV, visible light and NIR light due to its experimental bandgap width of 1.32 eV. A degradation rate of 99.6% was reached after 80 min under full spectrum irradiation.