In this paper, we report integral and differential cross sections for the electronic excitation of H 2 molecules by electron-impact. Our scattering amplitudes were calculated using the Schwinger multichannel method within the minimal orbital basis for single configuration interactions (MOB-SCI) level of approximation. Through the use of the present strategy we have investigated the coupling effects among ground state and first singlet and triplet states of the same spatial symmetry. The five-state (nine for degenerated states) close-coupling calculations joined the advantages of a well-described set of physical states of interest with a minimum associated pseudo-state space. The results obtained by means of the MOB-SCI technique show a significant improvement towards experimental data in comparison with previous two-channel close-coupling calculations.