The proposal that very small Néel skyrmions can form in SrRuO3/SrIrO3 epitaxial bilayers and that the electric field-effect can be used to manipulate these skyrmions in gated devices strongly stimulated the recent research of SrRuO3 heterostructures. A strong interfacial Dzyaloshinskii-Moriya interaction, combined with the breaking of inversion symmetry, was considered as the driving force for the formation of skyrmions in SrRuO3/SrIrO3 bilayers. Here, we investigated nominally symmetric heterostructures in which an ultrathin ferromagnetic SrRuO3 layer is sandwiched between large spin-orbit coupling SrIrO3 layers, for which the conditions are not favorable for the emergence of a net interfacial Dzyaloshinskii-Moriya interaction. Previously the formation of skyrmions in the asymmetric SrRuO3/SrIrO3 bilayers was inferred from anomalous Hall resistance loops showing humplike features that resembled topological Hall effect contributions. Symmetric SrIrO 3 /SrRuO 3 /SrIrO 3 trilayers do not show hump anomalies in the Hall loops. However, the anomalous Hall resistance loops of symmetric multilayers, in which the trilayer is stacked several times, do exhibit the humplike structures, similar to the asymmetric SrRuO 3 /SrIrO 3 bilayers. The origin of the Hall effect loop anomalies likely resides in unavoidable differences in the electronic and magnetic properties of the individual SrRuO 3 layers rather than in the formation of skyrmions.