Using first-principles calculations, we systematically studied the structural, elastic, and electronic properties of the technologically important chromium carbides: Cr3C2, Cr7C3, Cr23C6, Cr3C, and CrC. Our calculations show that the ground state structure for Cr7C3 is hexagonal, not orthorhombic. We further predict WC to be the energetically most stable structure for CrC. Our results indicate that all chromium carbides considered in this study are metallic and mechanically stable under the ambient condition. Among all chromium carbides, WC-type CrC exhibits the highest bulk and shear moduli and the lowest Poisson’s ratio, and is a potential low-compressibility and hard material.