A comprehensive understanding of electron−photon correlation is essential for describing the reshaping of molecular orbitals in quantum electrodynamics (QED) environments. The strong coupling QED Hartree−Fock (SC-QED-HF) theory tackles these aspects by providing consistent molecular orbitals in the strong coupling regime. The previous implementation, however, has significant convergence issues that limit the applicability. In this work, we introduce two second-order algorithms that significantly reduce the computational requirements, thereby enhancing the modeling of large molecular systems in QED environments. Furthermore, the implementation will enable the development of correlated methods based on a reliable molecular orbital framework as well as multi-level methodologies able to model the inclusion of solvent effects in this kind of complex systems.