The
role of transition metals in chemical reactions is often derived
from probing the metal 3d states. However, the relation between metal
site geometry and 3d electronic states, arising from multielectronic
effects, makes the spectral data interpretation and modeling of these
optical excited states a challenge. Here we show, using the well-known
case of red ruby, that unique insights into the density of transition
metal 3d excited states can be gained with 2p3d resonant inelastic
X-ray scattering (RIXS). We compare the experimental determination
of the 3d excited states of Cr3+ impurities in Al2O3 with 190 meV resolution 2p3d RIXS to optical absorption
spectroscopy and to simulations. Using the crystal field multiplet
theory, we calculate jointly for the first time the Cr3+ multielectronic states, RIXS, and optical spectra based on a unique
set of parameters. We demonstrate that (i) anisotropic 3d multielectronic
interactions causes different scaling of Slater integrals, and (ii)
a previously not observed doublet excited state exists around 3.35
eV. These results allow to discuss the influence of interferences
in the RIXS intermediate state, of core–hole lifetime broadenings,
and of selection rules on the RIXS intensities. Finally, our results
demonstrate that using an intermediate excitation energy between L3 and L2 edges allows measurement of the density
of 3d excited states as a fingerprint of the metal local structure.
This opens up a new direction to pump-before-destroy investigations
of transition metal complex structures and reaction mechanisms.