The preparation and structural characterization of a pair of scandium(III) phthalocyanine hydroxide complexes were achieved by reaction of PcScCl with alkali metal alkoxides, likely via hydrolysis of soluble PcSc-alkoxide intermediates. A Sc[Formula: see text]Li[Formula: see text]-OH)[Formula: see text] cubane supported by two distorted Pc rings of the form (PcSc)[Formula: see text]-OH)[Formula: see text]Li[Formula: see text](THF)(DME) was isolated from the reaction of PcScCl with LiO[Formula: see text]Pr, while a simpler alkali-metal-free [Pc[Formula: see text]Sc[Formula: see text]-OH)[Formula: see text](THF)] was obtained from addition of NaO[Formula: see text]Bu; both structures are reminiscent of bent metallocenes, with dihedral angles between the two Pc rings of 50.8 and 37.7[Formula: see text]respectively. A soluble PcScOH material can also be obtained directly via hydrolysis of insoluble PcScCl in approximately 95:5 THF:water. Reduction of the Pc ring of PcScCl using KC[Formula: see text] is reversible and generates Pc[Formula: see text] and Pc[Formula: see text]-containing materials that were characterized via UV-vis spectroscopy and, where appropriate EPR and [Formula: see text]H NMR spectroscopy; analogous reductions of the PcScOH-based species were irreversible. Exposure of the air-sensitive, reduced PcScCl-based species to ambient atmosphere generated PcScOH materials analogous to the direct hydrolysis route.