Reaction of unsaturated (44e (-) skeleton) [PdPt 2(mu-PPh 2) 2(mu-P 2Ph 4)(R F) 4] 4 with Br (-) produces the saturated (48e (-) skeleton) complex [NBu 4][(R F) 2Pt(mu-PPh 2)(mu-Br)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 5 without any M-M' bond. Attempts to eliminate Br (-) of 5 with Ag (+) in CH 2Cl 2 as a solvent gives a mixture of [(R F) 2Pt (III)(mu-PPh 2) 2Pt (III)(R F) 2] and some other unidentified products as a consequence of oxidation and partial fragmentation. However, when the reaction of 5 with Ag (+) is carried out in CH 3CN, no oxidation is observed but the elimination of Br (-) and the formation of [(R F) 2(CH 3CN)Pt(mu-PPh 2)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 6 (46e (-) skeleton), a complex with a Pt-Pd bond, takes place. It is noteworthy that the reaction of 5 with TlPF 6 in CH 2Cl 2 does not precipitate TlBr but forms the adduct [(R F) 2PtTl(mu-PPh 2)(mu-Br)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 7 with a Pt-Tl bond. Likewise, 5 reacts with [AgOClO 3(PPh 3)] in CH 2Cl 2 forming the adduct [AgPdPt 2(mu-Br)(mu-PPh 2) 2(mu-Ph 2P-PPh 2)(R F) 4(PPh 3)] 8, which contains a Pt-Ag bond. Both adducts are unstable in a CH 3CN solution, precipitating TlBr or AgBr and yielding the unsaturated 6. The treatment of [NBu 4] 2[(R F) 2Pt(mu-PPh 2) 2Pd(mu-PPh 2) 2Pt(R F) 2] in CH 3CN with I 2 (1:1 molar ratio) at 233 K yields a mixture of 4 and 6, which after recrystallization from CH 2Cl 2 is totally converted in 4. If the reaction with I 2 is carried out at room temperature, a mixture of the isomers [NBu 4][(R F) 2Pt(mu-PPh 2)(mu-I)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 9 and [NBu 4][(R F)(PPh 2R F)Pt(mu-PPh 2)(mu-I)Pd(mu-PPh 2) 2Pt(R F) 2] 10 are obtained. The structures of the complexes have been established on the bases of NMR data, and the X-ray structures of 5- 8 have been studied. The relationship between the different complexes has been studied.