The unique biomaterial multi-component Ti-Mo-xY (x = 0.5, 1.0, 1.5 wt. percent) alloys were created as a way to improve the mechanical characteristics and lessen the biomaterials' toxicity for implants to create new biomaterials for implant applications. This study aims to look at how adding yttrium (Y) changes the alloy's microstructure and mechanical characteristics. Through the use of powder metallurgy, Ti-Mo-xY (x = 0.5, 1.0, and 1.5 wt. percent) alloys are created. Atmospheric pressure high-purity argon gas is used to sinter the metals. The Brinell hardness tester was used for the hardness test, and optical, scanning, and scanning electron microscopes were used to characterize the microstructure. Ti-Mo-xY (x = 0.5, 1.0, 1.5 wt. percent) alloys tested hardness at 405.33, 435.76, and 510.05 HB, respectively. Ti-Mo-xY alloys with the enhanced compressive strength had values of 17.82, 18.04, and 18.14 MPa (where x = 0.5, 1.0, or 1.5 weight percent). The yttrium addition can significantly improve the mechanical properties of powder-metallurgical Ti alloys. Its cause may be related to the removed oxygen from the matrix and the strengthening action of Y oxides.