The Eurasian range of the tench distribution is subdivided into deeply divergent Western and Eastern phylogroups evidenced by nuclear and mitochondrial DNA sequence markers. A broad zone of overlap exists in central and western Europe, suggesting post-glacial contact with limited hybridisation. We conducted a population genetic test of this indication that the two phylogroups may represent distinct species. We analysed variation at introns of nuclear genes, microsatellites, allozymes and mitochondrial DNA in populations from two postglacial lakes within the contact zone in Germany. The test is based on the expectation that in the presence of strong barriers to reproduction, a hybrid population will show genome-wide associations among alleles and genotypes from each phylogroup even after hundreds of generations of interbreeding. In contrast to this expectation, no consistent significant deviations from linkage and Hardy-Weinberg equilibria were found. Samples from both lakes did show significant disequilibria but they were limited to individual loci and were not concordant between populations, and were not robust to the method used. The single consistent association can be attributed to physical linkage between two microsatellite loci. Thus, results of our study support the hypothesis of free interbreeding between the two phylogroups of tench. Therefore, although the phylogroups may be considered as separate phylogenetic species, the present data suggest that they are a single species under the biological species concept.