Experimental studies of hypernuclear dynamics, besides being essential for the understanding of strong interactions in the strange sector, have important astrophysical implications. The observation of neutron stars with masses exceeding two solar masses poses a serious challenge to the models of hyperon dynamics in dense nuclear matter, many of which predict a maximum mass incompatible with the data. In this paper, it is argued that valuable new insight can be gained from the forthcoming extension of the experimental studies of kaon electro production from nuclei to include the 208Pb(e,e′K+)Λ208Tl process. A comprehensive framework for the description of kaon electro production, based on factorization of the nuclear cross section and the formalism of the nuclear many-body theory, is outlined. This approach highlights the connection between the kaon production and proton knockout reactions, which will allow us to exploit the available 208Pb(e,e′p)207Tl data to achieve a largely model-independent analysis of the measured cross section.