Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study investigated the development of Pullulan/Collagen nanofiber scaffolds integrated with mesenchymal stem cells (MSCs) to enhance chronic wound healing. The combination of these biopolymers aims to optimize the scaffold properties for cell growth, viability, and tissue regeneration. Materials and Methods: Pullulan, Collagen, and Pullulan/Collagen composite nanofibers were fabricated using electrospinning. The fibers were characterized using scanning electron microscopy (SEM) to determine the fiber diameter, and Fourier-transform infrared spectroscopy (FTIR) was employed to assess the molecular interactions. Cell viability was evaluated using MSCs cultured on the scaffolds and apoptosis assays were conducted to assess cell health. Distilled water was used as the solvent to maximize biocompatibility. Results: SEM analysis revealed that Pullulan nanofibers exhibited a larger average diameter (274 ± 20 nm) compared to Collagen fibers (167.03 ± 40.04 nm), while the Pullulan/Collagen composite fibers averaged 280 ± 102 nm. FTIR confirmed the molecular interactions between Pullulan and Collagen. Regarding biocompatibility, the Pullulan/Collagen scaffold demonstrated superior cell viability at 99% compared to 91% for Pullulan alone. Apoptosis assays indicated significantly lower necrosis rates for the composite scaffold (1.29%) than for the Pullulan-only scaffolds (2.35%). Conclusion: The use of distilled water as a solvent played a critical role in increasing cell viability and facilitating healthy proliferation of MSCs without cellular damage. Additionally, the reduced platelet activation and macrophage activity (0.75-fold for both) further supported the biocompatibility of the Pullulan/Collagen scaffold, demonstrating its potential for tissue engineering and chronic wound healing applications.
This study investigated the development of Pullulan/Collagen nanofiber scaffolds integrated with mesenchymal stem cells (MSCs) to enhance chronic wound healing. The combination of these biopolymers aims to optimize the scaffold properties for cell growth, viability, and tissue regeneration. Materials and Methods: Pullulan, Collagen, and Pullulan/Collagen composite nanofibers were fabricated using electrospinning. The fibers were characterized using scanning electron microscopy (SEM) to determine the fiber diameter, and Fourier-transform infrared spectroscopy (FTIR) was employed to assess the molecular interactions. Cell viability was evaluated using MSCs cultured on the scaffolds and apoptosis assays were conducted to assess cell health. Distilled water was used as the solvent to maximize biocompatibility. Results: SEM analysis revealed that Pullulan nanofibers exhibited a larger average diameter (274 ± 20 nm) compared to Collagen fibers (167.03 ± 40.04 nm), while the Pullulan/Collagen composite fibers averaged 280 ± 102 nm. FTIR confirmed the molecular interactions between Pullulan and Collagen. Regarding biocompatibility, the Pullulan/Collagen scaffold demonstrated superior cell viability at 99% compared to 91% for Pullulan alone. Apoptosis assays indicated significantly lower necrosis rates for the composite scaffold (1.29%) than for the Pullulan-only scaffolds (2.35%). Conclusion: The use of distilled water as a solvent played a critical role in increasing cell viability and facilitating healthy proliferation of MSCs without cellular damage. Additionally, the reduced platelet activation and macrophage activity (0.75-fold for both) further supported the biocompatibility of the Pullulan/Collagen scaffold, demonstrating its potential for tissue engineering and chronic wound healing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.