Nervous system injuries, encompassing peripheral nerve injury (PNI), spinal cord injury (SCI), and traumatic brain injury (TBI), present significant challenges to patients' wellbeing. Traditional treatment approaches have limitations in addressing the complexity of neural tissue regeneration and require innovative solutions. Among emerging strategies, implantable materials, particularly electrospun drug‐loaded scaffolds, have gained attention for their potential to simultaneously provide structural support and controlled release of therapeutic agents. This review provides a thorough exploration of recent developments in the design and application of electrospun drug‐loaded scaffolds for nervous system repair. The electrospinning process offers precise control over scaffold characteristics, including mechanical properties, biocompatibility, and topography, crucial for creating a conducive environment for neural tissue regeneration. The large surface area of the resulting fibrous networks enhances biomolecule attachment, influencing cellular behaviors such as adhesion, proliferation, and migration. Polymeric electrospun materials demonstrate versatility in accommodating a spectrum of therapeutics, from small molecules to proteins. This enables tailored interventions to accelerate neuroregeneration and mitigate inflammation at the injury site. A critical aspect of this review is the examination of the interplay between structural properties and pharmacological effects, emphasizing the importance of optimizing both aspects for enhanced therapeutic outcomes. Drawing upon the latest advancements in the field, we discuss the promising outcomes of preclinical studies using electrospun drug‐loaded scaffolds for nervous system repair, as well as future perspectives and considerations for their design and implementation.This article is categorized under:
Implantable Materials and Surgical Technologies > Nanomaterials and Implants
Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement
Therapeutic Approaches and Drug Discovery > Emerging Technologies