The mass spectrometric behavior of palladium(II) halide complexes of three types of quinolinylaminophosphonates, diethyl and dibutyl esters of [α-anilino-(quinolin-2-yl)methyl] phosphonic (L1, L2), [α-anilino-(quinolin-3-yl) + is observed in the mass spectra of all the complexes, and its abundance as well as the fragmentation pathway depend on the type of the complex. In the cis complexes (1-4) the initial decomposition goes under two fragmentation routes: those in which the sodium molecular adduct sequentially loses halides HX/NaX and those in which this loss is in the competition with the loss of dialkyl phosphite. The predominant pathways for decomposition of trans dihalide (5-8) and tetrahalide (9-12) complexes include three competitive reactions; the loss of halides, dialkyl phosphites and the intact phosphonate ligand molecule and its fragments formed by ester dissociation or complete loss of the phosphonate ester moiety. A series of acetonitrile adducts and cluster ions derived from dimolecular clusters [2M + Na] + were also detected. The most important fragmentation patterns are rationalized and supported by the MS n studies.