“…These techniques were proven useful in studying the localization of trapped charges in thin films (Silveira & Marohn, 2004; Chen et al ., 2005a; Chen et al ., 2005b; Muller & Marohn, 2005), quantum dots (Tevaarwerk et al ., 2005) and nanotubes (Chin et al ., 2008); to measure the resistance at metal–semiconductor interfaces and grain boundaries in operating devices (Annibale et al ., 2007); to relate electrical properties, such as dielectric permittivity (Gramse et al ., 2009; El Khoury et al ., 2016; Fumagalli et al ., 2018), conductivity (Castellano‐Hernández & Sacha, 2015; Aurino et al ., 2016), piezoelectricity (Moon et al ., 2017) and percolation pathways (Barnes & Buratto, 2018), directly to the organization of the material at the mesoscopic length scales. Charge distribution in supramolecular architectures (Dabirian et al ., 2009; Borgani et al ., 2014; Garrett et al ., 2018), biomolecules (Gil et al ., 2002; Cuervo et al ., 2014; Dols‐Perez et al ., 2015; Lozano et al ., 2018; Lozano et al ., 2019), living organism (Esteban‐Ferrer et al ., 2014; Van Der Hofstadt et al ., 2016a; Van Der Hofstadt et al ., 2016b) and 2D materials (Collins et al ., 2013; Miyahara et al ., 2015; Shen et al ., 2018; Altvater et al ., 2019) was recently addressed with these techniques. The information obtained can be used as input for the design and optimization of device layouts, and ultimately for the simulation of functional devices and circuits.…”