The aberrant aggregation of TAR DNA-binding protein 43 kDa in cells leads to the pathogenesis of multiple fatal neurodegenerative diseases. Decoding the proposed initial transition between its functional dimeric and aggregation-prone monomeric states can potentially design a viable therapeutic strategy, which is presently limited by the lack of structural detail of the full-length TDP-43. To achieve a complete understanding of such a delicate phase space, we employed a multiscale simulation approach that unearths numerous crucial features, broadly summarized in two categories: (1) stateindependent features that involve inherent chain collapsibility, rugged polymorphic landscape dictated by the terminal domains, high β-sheet propensity, structural integrity preserved by backbone-based intrachain hydrogen bonds and electrostatic forces, the prominence of the C-terminal domain in the intrachain cross-domain interfaces, and equal participation of hydrophobic and hydrophilic (charged and polar) residues in cross-domain interfaces; and (2) dimerization-modulated characteristics that encompass slower collapsing dynamics, restricted polymorphic landscape, the dominance of side chains in interchain hydrogen bonds, the appearance of the Nterminal domain in the dimer interface, and the prominence of hydrophilic (specifically polar) residues in interchain homo-and cross-domain interfaces. In our work, the ill-known C-terminal domain appears as the most crucial structure-dictating domain, which preferably populates a compact conformation with a high β-sheet propensity in its isolated state stabilized by intrabackbone hydrogen bonds, and these signatures are comparatively faded in its integrated form. Validation of our simulated observables by a complementary spectroscopic approach on multiple counts ensures the robustness of the computationally predicted features of the TDP-43 aggregation landscape.