In this paper we calculate pair production from bremsstrahlung as a classical effect in Stueckelberg-Horwitz-Piron electrodynamics. In this framework, worldlines are traced out dynamically through the evolution of events x µ (τ) parameterized by a chronological time τ that is independent of the spacetime coordinates. These events, defined in an unconstrained 8D phase space, interact through five τ-dependent gauge fields induced by the event evolution. The resulting theory differs in its underlying mechanics from conventional electromagnetism, but coincides with Maxwell theory in an equilibrium limit. In particular, the total massenergy-momentum of particles and fields is conserved, but the mass-shell constraint is lifted from individual interacting events, so that the standard Feynman-Stueckelberg interpretation of pair creation/annihilation is implemented in classical mechanics.We consider a three-stage interaction which when parameterized by the laboratory clock x 0 appears as (1) particle-1 scatters on a heavy nucleus to produce bremsstrahlung, (2) the radiation field produces a particle/antiparticle pair, (3) the antiparticle is annihilated with particle-2 in the presence of a second heavy nucleus. When parameterized in chronological time τ, the underlying process develops as (1) particle-2 scatters on the second nucleus and begins evolving backward in time with negative energy, (2) particle-1 scatters on the first nucleus and releases bremsstrahlung, (3) particle-2 absorbs radiation which returns it to forward time evolution with positive energy.