Skeletal muscle fibre transitions occur in many biological processes, in response to alterations in neuromuscular activity, in muscular disorders, during age-induced muscle wasting and in myogenesis. It was therefore of interest to perform a comprehensive proteomic profiling of muscle transformation. Chronic low-frequency stimulation of the rabbit tibialis anterior muscle represents an established model system for studying the response of fast fibres to enhanced neuromuscular activity under conditions of maximum activation. We have conducted a DIGE analysis of unstimulated control specimens versus 14-and 60-day conditioned muscles. A differential expression pattern was observed for 41 protein species with 29 increased and 12 decreased muscle proteins. Identified classes of proteins that are changed during the fast-to-slow transition process belong to the contractile machinery, ion homeostasis, excitation-contraction coupling, capillarization, metabolism and stress response. Results from immunoblotting agreed with the conversion of the metabolic, regulatory and contractile molecular apparatus to support muscle fibres with slower twitch characteristics. Besides confirming established muscle elements as reliable transition markers, this proteomics-based study has established the actin-binding protein cofilin-2 and the endothelial marker transgelin as novel biomarkers for evaluating muscle transformation.