Unwanted vibrations of the vehicles are regarded as harmful threats to the human health from various biomechanical and psychophysical aspects. Road roughness has been considered as the main cause of unwanted vibrations in bus vehicles. Vertical seat vibrations have been found via simulation of a ten degree of freedom (10-DOF) model of an intercity bus vehicle under harmonic and random excitations caused by road roughness. To suppress undesirable vibrations, mass-spring-damper passive absorbers are proposed in a thirteen degrees of freedom (13-DOFs) model of the bus. By optimizing the characteristics of the embedded passive absorbers under each seat, and implementation of the designed absorbers, it is observed that the vertical displacement amplitudes in the frequency response of the seats are reduced especially near the bus resonant frequencies. In addition, the vertical displacement and acceleration amplitudes are decreased in the random excitation of the road roughness. According to the results, optimized mass-spring-damper absorbers are suggested as a practical solution to suppress the unwanted vibration effects in the bus vehicle.