We consider the phenomenological implications of charged scalar extensions of the SM Higgs sector in addition to EFT couplings of this new state to SM matter. We perform a detailed investigation of modifications of loop-induced decays of the 125 GeV Higgs boson, which receives corrections from the propagating charged scalars alongside one-loop EFT operator insertions and demonstrate that the interplay of H → γγ and H → Zγ decays can be used to clarify the additional states phenomenology in case a discovery is made in the future. In parallel, EFT interactions of the charged Higgs can lead to a decreased sensitivity to the virtual presence of charged Higgs states, which can significantly weaken the constraints that are naively expected from the precisely measured H → γγ branching ratio. Again H → Zγ measurements provide complementary sensitivity that can be exploited in the future.